

Ultrasensitive Detection of Circulating Tumor DNA In Untreated Diffuse Large B-cell Lymphoma

Cancer Institute

Mark Roschewski¹, David M. Kurtz^{2,3,4}, Jason R. Westin⁵, Ryan C. Lynch⁶, Charles W. Macaulay², Christian Kuffer⁸, Stefan Alig², Andre Shultz³, Gregory J. Hogan⁷, Sandra Close⁷, Jacob J. Chabon⁷, Maximilian Diehn^{3,4,8}, Wyndham H. Wilson¹, Ash A. Alizadeh²

¹Lymphoid Malignancies Branch, National Cancer Institute, Bethesda, MD; ²Division of Oncology, Department of Medicine, Stanford, CA; ⁴Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA; ⁴Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA; ⁴Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA; ⁴Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA; ⁴Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA; ⁴Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA; ⁴Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA; ⁴Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA; ⁴Institute, Stanford, Stan ⁵Department of Lymphoma and Myeloma, MD Anderson Cancer Center, Houston, TX; ⁶University of Washington/Fred Hutchinson Cancer Research Center, Seattle, WA, ⁷Foresight Diagnostics, Aurora, CO; ⁸Department of Radiation Oncology, Stanford University, Stanford, CA

Background

- DLBCL response criteria rely on imaging scans which cannot detect disease at the molecular level
- Circulating tumor DNA (ctDNA) is a prognostic biomarker in DLBCL before and after therapy
- Detection of ctDNA at the end-of-therapy (EoT) has low sensitivity with approaches that have a limit of detection (LOD) of 1×10^{-4}
- PhasED-Seq is an ultrasensitive ctDNA assay that reduces background error rate by 100x and has a LOD of 1 x 10⁻⁶

Hypothesis

 The improved analytic sensitivity of PhasED-Seq could improve disease detection at EoT in untreated DLBCL

Methods

Subjects and Trials

- Pooled analysis of 5 prospective frontline trials for DLBCL
- Integrated PhasED-Seq data during therapy and EoT
- First, we assessed the prognostic value of ctDNA as MRD at landmark timepoints during therapy and at EoT
- Next, we compared the prognostic value of ctDNA as MRD at EoT to conventional response criteria

Specimen Collection and Analysis

- Pre-treatment tumor or plasma & PBMC were used to identify Phased Variants (PVs) for tracking
- PVs were tracked as MRD in plasma that had been prospectively collected at baseline, C2D1, C3D1, C4D1, and EoT timepoints
- · Cell-free DNA was profiled by PhasED-Seq blinded to clinical outcomes at 2 labs:
 - Foresight Diagnostics (Aurora, CO)
 - Stanford University (Palo Alto, CA)
- Plasma was reported as MRD positive when ctDNA levels exceeded an analytical detection threshold of 1×10^{-6}

Table 1. Characteristics of the Patier
Characteristic
Number of patients
Female sex
Median age (range) - yr
DLBCL, subtype
DLBCL, GCB
DLBCL, non-GCB
High grade B-cell lymphoma with MYC and BC.
High grade B-cell lymphoma with MYC and BC.
Primary mediastinal B-cell lymphoma
T-cell histocyte rich DLBCL
Unknown
Stage
I
II
III
IV
International Prognostic Index
0 to 1
2
3
4 to 5
Cell-free DNA samples available
Prior to therapy
End of cycle 1
End of cycle 2
End of cycle 3
End of therapy
Abbreviations: DLBCL, diffuse large B-cell l
non-germinal center B-cell,

